Usted está aquí

(x/a)^2 - (y/b)^2 - z = 0

Encontrar similitudes entre las distintas artes es algo común. Las correspondencias se pueden establecer con base en diferentes criterios: forma, estilo, efecto emotivo, intención de la obra, y cualquiera que nuestro ingenio determine. Así, una fachada catedralicia ricamente ornamentada con motivos vegetales puede compararse con una de esas sinuosas piezas para clavecín, plenas de trinos, grupetos y mordentes. Por lo general, estas semejanzas no provienen de la intención del creador, sino que surgen de una sinestesia estilística, del espíritu estético de la época, o bien, al sustento teórico que las genera. Pero también hay obras de arte que están relacionadas con principios matemáticos, obras para cuya creación el autor —ahora sí de manera intencionada— utilizó sistemas formales, series, funciones o recursos estadísticos. Bela Bartok estableció proporciones entre los distintos elementos de algunas de sus composiciones tomando como base la serie Fibonacci. Pero, ¿es posible establecer una doble correspondencia; una que contemple similitudes entre dos artes distintas y a la vez con un sistema formal?

En 1958 se realizó la Exposición Universal de Bruselas. Para ello, la empresa Philips pidió al arquitecto Le Corbusier la construcción de un edificio donde tuviera lugar un espectáculo multimedia. Absorbido por sus ocupaciones, Le Corbusier decidió llamar a Iannis Xenakis para colaborar en el proyecto. Ingeniero civil, arquitecto y compositor de ascendencia griega, Xenakis llevó la mayor parte de la concepción y diseño del Pabellón Philips. Pero, viajemos tres años atrás en el tiempo.

En 1955, Xenakis había estrenado, en el Festival de Donaueschngen, su composición “Metastaseis” para 61 instrumentos, la cual tenía como base teórica un principio geométrico que permite generar curvas a partir de líneas rectas (asíntotas) que se aproximan constantemente a ellas. En  “Metastaseis”, Iannis trasladó las rectas a clave musical en forma de desplazamientos frecuenciales ascendentes o descendentes, lo cual no es otra cosa que lo que los músicos llaman “glissandi”. Y es que, formalmente, un glissando puede ser representado gráficamente expresando la frecuencia sonora (altura del sonido) y el tiempo (duración del sonido) en los ejes Y y X respectivamente. Así, en “Metastaseis”, Xenakis generó curvas musicales a partir de asíntotas sonoras. Ahora, volvamos a la Exposición Universal de 1958.

El Pabellón Philips se construyó a partir de nueve paraboloides hiperbólicos integrados uno en otro de manera asimétrica. Un paraboloide hiperbólico es una superficie reglada, es decir, que aunque es curva, se construye a partir de líneas rectas; asíntotas. Con ello, la relación del Pabellón Philipps y Metastaseis queda confirmada. 

El edificio engullía a los visitantes mientras escuchaban la composición “Concret PH”, del mismo Xenakis. Luego los digería a través de un corredor curvo que conducía a una auditorio donde tenía lugar un espectáculo lumínico  enmarcado por la obra “Poème électronique” de Edgard Varèse, y donde se podía observar una escultura y un maniquí femenino suspendidos del techo. Después de la digestión, los asistentes eran expulsados por una única salida. El 30 de Enero en 1959 el edificio se esfumó como se esfuman los sonidos. Su demolición fue planeada; la fugacidad era parte de la obra.

Dije alguna vez que la música es la fugaz arquitectura; pues bien, Xenakis le otorgó musicalidad a la arquitectura dandole transitoriedad, y dio a la música cualidades corpóreas a través de principios geométricos, con lo cual logró una estrecha relación entre dos obras artísticas de distinta materia. Xenakis consiguió, a la luz de un mismo principio matemático, la música de la arquitectura y la arquitectura de la música.

*Agradezco a mi hermano José la ayuda para precisar algunos términos a lo largo de esta columna, y de mi vida.